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Rationale

® Pepper-like bkg (mostly from photons)
® Real tracks trough the detector: (beware of muons from outside)

® Two strategies have been implemented in ILCroot:
® Detector layout with extra redundancy in forward region (7 disks)
® Full parallel Kalman Filter
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ILCroot: root L C

°
All ROOT tools are available (1/0, graphics, PROOF, data structure, etc)
Extremely large community of users/developers
°
)
° Single framework, from generation to reconstruction through simulation. Don’t forget analysis!!!
° It is immediatly usable for test beams
° Six MDC have proven robustness, reliability and portability
[
° Interface to external files in various format (STDHEP, text, etc.)
° Standalone VTX track fitter
° Pattern recognition from VTX (for si central trackers)
° Parametric beam background (# integrated bunch crossing chosen at run time
° Growing number of experiments have adopted it: Alice (LHC), Opera (LNGS), (Meg). CMB
(GSI), Panda(GSl), 4th Concept, (SiLC ?) and
)
°
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Simulation steps in ILCroot:
Tracking system

Signal Background Persistent Objects

MC Generation [ MC Generation [l
Energy Deposits in Detector Energy Deposits in Detector

Digitization [J
Detector response combined

Track Finding [ Tracks

Pattern Recognition [1 Recpoints m

Track Fitting O Track Parameters DST tracks



Fast simulation and/or fast digitization also
avallable in ILCroot for tracking system

* Do we need fast simulation in tracking studies?

Yes!
— Calorimetry related studies do not need full simulation/digitization for

tracking
— [Faster computation for quick answer to response of several detector
layouts/shielding

- Do we need full simulation in tracking studies?
Yes!

— Fancy detector and reconstruction needed to be able to separate

hits from signal and background
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Tracking detectors for MuX
VXD + SIT + FTD
+ 6° nozzle
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Tracking detectors for MC
VXD + SIT + FTD

+ 10° nozzle

Version SiD01-Polyhedra + SiDO01
Guard ring: mm  0.07

Barrel Layers: 5

Total Tiles Barrel 7312

Wafer layout

Si wafer 300 mm

Carbonfiber in 0.228 mm

Rohacell tickness 3.175 mm
Carbonfiber out 0.228 mm

Si support 300 mm x 6.667 mm x 63.8 mm
Kapton Layer 0.1 mm

Support layout

Carbon Fiber 500 mm

Rohacell 8.075 mm

Carbon Fiber 500 mm
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Silicon Tracker (SIT) and
Forward Tracker Detector (FTD)

® 50 um x 50 um Si pixel (or Si strips
double Si strips available)

® Barrel : 5 layers subdivided in

staggered ladders

Endcap : (4+2) + (4+2) disks Si pixel

FTD: 3 + 3 disks Si pixel

® Mostly SiD layout + FTD
® Not parametrized geometry
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Vertex Detector (VXD)
Nozzle and Beam Pipe

® 20 um x 20 um Si pixel

® Barrel : 5 layers subdivided in 12- 30 ladders
® Endcap : 4 + 4 disks subdivided in 12 ladders

December 1st, 2010

® Mostly SiD layout
® Different dimensions (different B field = 3.5 T)
® [Full parametrized geometry
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6° Nozzle
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10° Nozzle
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10° Skinned Nozzle
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Digitization and Clusterization
of Si Detectors In llcroot:

a description of the algorithms

avallable for detailed tracking
simulation and studies



Technologies Implemented

* 3 detector species:
* Silicon pixels
* Silicon Strips
* Silicon Drift
* Pixel can have non constant size in different layers
* Strips can also be stereo and on both sides

* Dead regions are taken into account
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SDigitization in Pixel Detector
(production of summable digits)

* Loop over the hits produced in the layer and create a segment in Siin 3D

— Step (from MC) along the line >1 um increments
* Convert GeV to charge and get bias voltage:
g = dE*dt/3.6e-9  dV= thick/bias voltage
* Compute charge spreading:
oxy=sqrt(2k/e*T°*dV*L), oz=fda*oXy

« Spread charge across pixels using Erfc(xy,z,oxy,oz)

— Charge pile-up is automatically taken into account
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SDigitization in Pixels (2)

Add couplig effect between nearby pixels row-wise and column-wise
(constant probability)

Remove dead pixels (use signal map)
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Digitization in Pixels

* Load SDigits from several files (signal or multiple
background)

* Merge signals belonging to the same pixel
— Non-linearity effects
— Saturation

* Add electronic noise

* Save Digits over threshold
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Clusterization in Pixel Detector

Create a Initial cluster from adjacent pixels (no for
diagonal)

Subdivide the previous cluster in smaller NxN
clusters

Reconstruct cluster and error matrix from
coordinate average of the cluster

Kalman filter picks up the best cluster
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Parameters used for the pixel tracking
detectors In current MuX studies

Size Pixel X = 20 ym (VXD and FTD), 50 ym (SIT)
Size Pixel Z =20 uym (VXD and FTD), 50 uym (SIiT)
Eccentricity = 0.85 (fda)

Bias voltage =18 V

cr = 0% (coupling probability for row)

cc = 4.7% (coupling probability for column)
threshold = 3000 electrons

electronics noise = 0 electrons

T° =300 °K
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Track Fitting in ILCRoot

Track finding and fitting is a global tasks: individual detector
collaborate

It is performed after each detector has completed its local
tasks (simulation, digitization, clusterization)

It occurs in three phases:
1. Seeding in SIT and fitting in VXD+SIT+MUD
2. Standalone seeding and fitting in VXD
3. Standalone seeding and fitting in MUD

Two different seedings:

A. Primary seeding with vertex constraint
B. Secondary seeding without vertex constraint

| o
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Kalman Filter (classic)

® Recursive least-squares estimation.

® Equivalent to global least-squares method including all
correlations between measurements due to multiple scattering.

® Suitable for combined track finding and fitting

® Provides a natural way:

— to take into account multiple scattering, magnetic field
inhomogeneity

— possibility to take into account mean energy losses
— to extrapolate tracks from one sub-detector to another
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Parallel Kalman Filter

® Seedings with constraint + seedings without constraint at
different radii (necessary for kinks and V0) from outer to inner

® Tracking
* Find for each track the prolongation to the next layer
* Estimate the errors

* Update track according current cluster parameters

* (Possible refine clusters parameters with current track)

® Track several track-hypothesis in parallel
* Allow cluster sharing between different track

® Remove-Overlap

¢ fitted during the Kalman filtering
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Tracking Strategy — Primary Tracks

* [Iterative process

* Forward propagation towards to the
vertex

SiT »VXD

* Refit inward
MUD - SiT » VXD

* Continuous seeding —track
segment finding in all detectors
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VXD Standalone Tracking

* Uses Clusters leftover in the VXD by Parallel Kalman Filter

* Seeding in VXD in two steps

e Step 1: look for 3 Clusters in a narrow row or 2 Clusters + IP constraint
* Step 2: prolongate to next layers each helix constructed from a seed

* After finding Clusters, all different combination of clusters are refitted
with the Kalman Filter and the tracks with lowest ¥° are selected

* Finally, the process is repeated attempting to find tracks on an
enlarged row constructed looping on the first point on different layers
and all the subsequent layers

e In 3.5 Tesla B-field P,> 20 MeV tracks reconstructable
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Performance studies

__reconstructed tracks _
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Defining “good tracks” (candidate for reconstruction)
DCA(true) <3.5cm
AND
at least 4 hits in the detector
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Performance studies

P: [0,200] GeV
0: [0,180] Degrees
®: [0,360] Degrees

B: 3.5 Tesla
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Compare:
6° Nose (March 2010)
VS
10° Nose (Oct. 2010)
VS
skinned 10° Nose
(temporary version by N. Terentiev)



Event Display

green - hits
purple - reconstructed tracks
red - MC particle

’
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Geometrical Efficiency vs Theta

10° Nose with detector interference 10° Nose with no detector interference
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Geometrical Efficiency vs Theta (zoom)

10° Nose with detector interference 10° Nose with no detector interference
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Geometrical Efficiency vs Pt

10° Nose with detector interference
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Geometrical Efficiency vs Pt (zoom)

10° Nose with detector interference
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Geometrical Efficiency vs P

10° Nose with detector interference 10° Nose with no detector interference
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Geometrical Efficiency vs P (zoom)

10° Nose with detector interference

| Efficiency of selection of good tracks |
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Tracking Efficiency vs Theta

10° Nose with detector interference 10° Nose with no detector interference
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Tracking Efficiency vs Theta (zoom)

10° Nose with detector interference 10° Nose with no detector interference
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Geometrical Efficiency vs Pt (zoom)

10° Nose with detector interference
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Tracking Efficiency vs Pt

10° Nose with detector interference 10° Nose with no detector interference
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Tracking Efficiency vs Pt (zoom

10° Nose with detector interference 10° Nose with no detector interference
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1/Pt Resolution vs Theta

10° Nose with detector interference 10° Nose with no detector interference
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Theta Resolution vs Theta

10° Nose with no detector interference
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10° Nose with detector interference
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/. Resolution vs Theta

10° Nose with detector interference 10° Nose with no detector interference
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r Relative Pt resolution with P
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Theta Resolution vs P

10° Nose with no detector interference
| Theta resolution with P_| htglvsp_2

10° Nose with detector interference
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/. Resolution vs P

10° Nose with detector interference
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10° Nose with no detector interference
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Conclusions

® Pattern recognition and Kalman Filter have been continuously improved
over the past 4 years for ILC and CLIC studies (F. Ignatov)

® More material in the game
® Geant4 interferance between detector and nozzle volumes in the game
(see N. Terentiev talk on Nov. 10th)

® |Implementation of new Si-detector compatible with 10° nozzle will start
immediatly

® Repeat current studies with background (next talk)
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SDigitization In Strips Detector

Get the Segmentation Model for each detector (from
llcVXDSegmentationSSD class)

Get Calibration parameters (from licVXDCalibrationSSD class)
Load background hits from file (if any)
Loop on the hits and create a segment in Siin 3D

Step along the line in equal size increments

* Compute Drift time to p-side and n-side:
tdrift[0] = (y+(seg->Dy()*1.0E-4)/2)/GetDriftVelocity(0);
tdrift[1] = ((seg->Dy()*1.0E-4)/2-y)/GetDriftVelocity(1);

* Compute diffusion constant:
sigmalk] = TMath::Sqrt(2*GetDiffConst(k)*tdrift[Kk]);

* Integrate the diffusion gaussian from -30 to 30
Charge pile-up is automatically taken into account

December 1st, 2010 Muon Collider Physics and Detector Working Group
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SDigitization in Strips (2)

* Add electronic noise per each side separately
/I noise is gaussian
noise = (Double_t) gRandom->Gaus(0,res->GetNoiseP().At(ix));

// need to calibrate noise
noise *= (Double_t) res->GetGainP(ix);

/I noise comes in ADC channels from the calibration database
/I It needs to be converted back to electronVolts
noise /= res->GetDEVTOADC(1.);

* Add coupling effect between nearby strips
- different contribution from left and right neighbours
- Proportional to nearby signals

* Remove dead pixels (use signal map)

* Convert total charge into signal (ADC count)
if(k==0) signal /= res->GetGainP(ix);
else signal /= res->GetGainN(ix);
December 1st, 2010 . . . Muon Coliider Physics and Detector Working Group
// signal is converted in unit of ADC

signal = res->GetDEVTOADC(fMapA2->GetSignal(k,ix));
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Clusterization in Strip Detector

Create a Initial cluster from adjacent strips (no for diagonal)

Separate into Overlapped Clusters
— Look for through in the analog signal shape

— Split signal of parent clusters among daugheter clusters

Intersect stereo strips to get Recpoints from CoG of signals
(and error matrix)

Kalman filter picks up the best Clusters
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The Parameters for the Strips

« Strip size (p, n)
* Stereo angle (p-> 7.5 mrad, n->25.5 mrad)
* lonization Energy in Si = 3.62E-09
* Hole diffusion constant (= 11 cm?/sec)
* Electron diffusion constant (= 30 cm?/sec)
« VP,..(=0.86E+06 cm/sec) , WN,..(=2.28E+06 cm/sec)
* Calibration constants
— Gain
— ADC conversion (1 ADC unit = 2.16 KeV)
* Coupling probabilities between strips (p and n)
o0 of gaussian noise (p AND n)
* threshold

December 1st, 2010 Muon Collider Physics and Detector Working Group
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